If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+14t-5(t^2)=0.
determiningTheFunctionDomain -5t^2+14t+3=0
a = -5; b = 14; c = +3;
Δ = b2-4ac
Δ = 142-4·(-5)·3
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16}{2*-5}=\frac{-30}{-10} =+3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16}{2*-5}=\frac{2}{-10} =-1/5 $
| 3.x2+2x+5=0 | | 3x+6/2x+8=5 | | 3/x-2=(1/(x-1))+7/(x-1)(x-2) | | C(n,15)=455 | | 145x^2+1=18x | | 0.15(40)+0.60x=0.40(40+x | | C=4.9+2.4m | | 7x3+21x2=0, | | 7x3+21x2=0 | | 2x-3=5*6 | | 2x-3=5/6 | | 5x-7÷2=3× | | 10+2x=-1 | | 3x/2-5=-2x+2 | | 5x+19=15x-41 | | 5x19=15x-41 | | 11-5x=24-19x | | 3x+45-45=180-45 | | 3x/2+2=19 | | 8(5^2x-1)=3(2^4x+1) | | x+22+15=180 | | x+22+x+15=180 | | (x+22)+(x+15)=180 | | 2x(2x-18)=-81 | | 0.3d+6=d | | 2x2–16x+4=0 | | Y=220+40x | | F(x)=380+40x | | 0=380+40x | | 88x=121 | | 143x/2=I | | x+14=(-32) |